
 International Journal of Engineering Research

 & Management Technology

 Email: editor@ijermt.org www.ijermt.org

Copyright@ijermt.org Page 54

 November- 2014 Volume 1, Issue-6

 ISSN: 2348-4039

Secure Data Storage in Cloud Computing

Chiranjit Dutta, Ranjeet Singh

Faculty of Information Technology

SRM University

NCR Campus Ghaziabad

1. ABSTRACT

Cloud computing is seen as an architecture of next generation IT enterprise. Cloud computing stores and moves

the application software and database to the data centers, unlike traditional IT solutions, where all the services

provided by them are under physical, logical and personal controls, due to which the data storage may not be

fully trustworthy. So here we focus on securing the data storage in cloud computing, which always has been an

important aspect for quality of services. To do so we propose an effecting scheme with two features:

 Using the homomorphism token with distributed Verification of erasure correcting code data, our scheme

achieves integration of storage correctness insurance and data error localization ie. Identification of

misbehaving servers.

 It support secure and effective and dynamic operation on data blocks like update , delete and append.

Extensive security analysis shows our scheme is highly efficient and resilient against Byzantine Failure,

modification attack and malicious data

.

Keywords – Cloud Computing, SaaS, PaaS, IaaS, Amazon EC2

2. INTRODUCTION

Several trends are opening up the era of Cloud Computing, which is an Internet-based development and use of

computer technology. The ever cheaper and more powerful processors, together with the software as a service

(SaaS) computing architecture, are transforming data centers into pools of computing on a huge scale. The increasing

network bandwidth and reliable yet flexible network connections make it even possible that users can now subscribe

high quality services from data and software that reside solely on remote data centers.

Moving data into the cloud offers great convenience to users since they don’t have to care about the

complexities of direct hardware management. The pioneer of Cloud Com- puting vendors, Amazon Simple

Storage Service (S3) and Amazon Elastic Compute Cloud (EC2) [1] are both well known examples. While

these internet-based online services do provide huge amounts of storage space and customizable computing

resources, this computing platform shift, however, is eliminating the responsibility of local machines for data

maintenance at the same time. As a result, users are at the mercy of their cloud service providers for the

availability and integrity of their data. Recent downtime of Amazon’s S3

From the perspective of data security, which has always been an important aspect of quality of service, Cloud

Computing inevitably poses new challenging security threats for number of reasons. Firstly, traditional

cryptographic primitives for the purpose of data security protection cannot be directly adopted due to the users’

loss control of data under Cloud Computing. Therefore, verification of correct data storage in the cloud must be

conducted without explicit knowledge of the whole data. Considering various kinds of data for each user

stored in the cloud and the demand of long term continuous assurance of their data safety, the problem of

verifying correctness of data storage in the cloud becomes even more challenging. Secondly, Cloud Computing

is not just a third party data warehouse. The data stored in the cloud may be frequently updated by the users,

including insertion, deletion, modification, appending, reordering, etc.

International Journal Of Engineering Research & Management Technology ISSN: 2348-4039

 Email: editor@ijermt.org www.ijermt.org

Copyright@ijermt.org Page 55

 November - 2014 Volume 1, Issue-6

2.1 Design Goals

To ensure the security and dependability for cloud data storage under the aforementioned adversary model,

we aim to design efficient mechanisms for dynamic data verification and operation and achieve the following

goals:

(1) Storage correctness: to ensure users that their data are indeed stored appropriately and kept intact all the

time in the cloud.

(2) Fast localization of data error: to effectively locate the mal-functioning server when data corruption has been

detected.

 (3) Dynamic data support: to maintain the same level of storage correctness assurance even if users modify,

delete or append their data files in the cloud.

 (4) Dependability: to enhance data availability against Byzantine failures, malicious data modification and server

colluding attacks, i.e. minimizing the effect brought by data errors or server failures.

(5) Lightweight: to enable users to perform storage correctness checks with minimum overhead.

 2.2 Notation and Preliminaries

 F - the data file to be stored. We assume that F can be denoted as a matrix of m equal-sized

data vectors, each consisting of l blocks.

 Data blocks are all well represented as elements in Galois Field GF(2
p
) for p = 8 or 16.

 A-The dispersal matrix used for Reed Solomon coding.

 G - The encoded file matrix, which includes a set of n=m+k vectors, each consisting of l

blocks.

 fkey(·) - pseudorandom function (PRF), which is defined

 as f : {0,1}∗ × key → GF(2
p
).

 ver - a version number bound with the index for individual blocks, which records the times the

block has been modified. Initially we assume version is 0 for all data blocks.

 s j - the seed for PRF, which depends on the file name, block index I the server position j as

well as the optional block version number ver.

3. ENSURING CLOUD DATA STORAGE

In cloud data storage system users stores their data in the cloud and no longer possess the data locally.

The correctness and availability of the data files being stored on the distributed cloud servers must be

guaranteed. One of the key issues is to effectively detect any unauthorized data modification and

corruption possibly due to server compromise Possibly due to server compromise and/or random Byzantine

failures. Besides, in the distributed case when such inconsistencies are successfully detected, to find which

server the data error lies in is also of great significance, since it can be the first step to fast recover the storage

errors. To address these problems, our main scheme for ensuring cloud data storage is presented in this section.

The first part of the section is devoted to a review of basic tools from coding theory that is needed in our scheme

for file distribution across cloud servers. Then, the homomorphism token is introduced. The token computation

function we are considering belongs to a family of universal hash function chosen to pre-serve the

homomorphism properties, which can be perfectly integrated with the verification of erasure-coded data

subsequently; it is also shown how to derive a challenge response protocol for verifying the storage correctness

as well as identifying misbehaving servers. Finally, the procedure for file retrieval and error recovery based on

erasure-correcting code is outlined.

International Journal Of Engineering Research & Management Technology ISSN: 2348-4039

 Email: editor@ijermt.org www.ijermt.org

Copyright@ijermt.org Page 56

 November - 2014 Volume 1, Issue-6

3.1 File Distribution Preparation

 It is well known that erasure-correcting code may be used to tolerate multiple failures in distributed storage

systems. In cloud data storage, we rely on this technique to disperse the data file F redundantly across a set of n

= m + k distributed servers. A (m + k, k) Reed-Solomon erasure correcting code is used to create k redundancy

parity vectors from m data vectors in such a way that the original m data vectors can be reconstructed from any

m out of the m + k data and parity vectors. By placing each of the m + k vectors on a different server, the

original data file can survive the failure of any k of the m+k servers without any data loss, with a space overhead of

k/m. i.e., the unmodified m data file vectors together with k parity vectors is distributed across m+k different

servers. The procedure or Algorithms for the process of the ensuring the data storage security in cloud

computing are as:

Algorithm 1 Token Pre-computation

1. Procedure

2.Choose Parameters l,n and function f, and φ;

3.Choose number t of tokens;

4.Choose number r of indices per verification;

5.Generate master key key Kprp and challenge kchal;

6. for vector G
(j)

, j ← 1, n do;

7. for round i← 1, t do ;

8. Compute v
ij)

 = ∑q=1 αi ∗ G(j)[φm K(q)]P k
p rp.

9. end for

10. end for

11. Stores all the vis locally.

12. end procedure

3.2 Challenge Token Precomputation

 In order to achieve assurance of data storage correctness and data error localization simultaneously, our scheme

entirely relies on the pre-computed verification tokens. Before file distribution the user pre-computes a

certain number of short verification tokens on individual vector G
(j)

 (j ∈ {1, . . . , n}), each token covering a

random subset of data blocks. Upon receiving challenge, each cloud server computes

a short “signature” over the specified blocks and returns them to the user..Suppose the user wants to challenge

the cloud servers t times to ensure the correctness of data storage. Then, he must pre-compute t verification

tokens for each G
(j)

(j∈{1,...,n}), using a PRF f(·), a PRP φ(·), a challenge key kchal and a master

permutation key KP RP . To generate the i
th

 token for server j, the user acts as follows:

1. Derive a random challenge value αi of GF(2
p
) by αi = fk chal (i) and a permutation key k

pr)p
 based on KP RP

2. Compute the set of r randomly-chosen indices:

 {Iq ∈ [1, ..., l]|1 ≤ q ≤ r}, where Iq = φk (i)(q).

3. Calculate the token as:

 v
ij)

 =α
i
 * G

(j)
[Iq], where G

(j)
 [Iq] = g

Ij)
q

Algorithm 2 Correctness Verification and Error Localization

1.Procedure

2.. Recompute αi = fkchal (i) and k
pr)p

 from KP

3. Send {αi, k
pr)p

} to all the cloud servers;

4. {R
ij)

 = ∑q=1 αiv∗Gr (j)[φk(i)prp

International Journal Of Engineering Research & Management Technology ISSN: 2348-4039

 Email: editor@ijermt.org www.ijermt.org

Copyright@ijermt.org Page 57

 November - 2014 Volume 1, Issue-6

 (q)]|1 ≤ j ≤ n}

5. for R(j) ← R(j) −∑do q=1 fkj (sIq ,j)·αi ,

Iq = φk

6. end for

7.if((R
i1)

, . . . , R
im)

). P== (R
im+1)

, . ., R
in)

)) then

8. Acceptr and ready for the next challenge.

9. else

10. for (j ← 1, n) do

11. if (R
ij)

! =v
ij)

) then

12. return server j is misbehaving

13 end if

14. end for

15. end if

 16.end procedure

3.3 Correctness Verification and Error Localization

Error localization is a key prerequisite for eliminating errors in storage systems. However, many previous schemes

do not explicitly consider the problem of data error localization. Our scheme outperforms those by integrating the

correctness verification and error localization in our challenge-response not only determines the correctness of

the distributed storage, but also contains information to locate potential data error(s).

Specifically, the procedure of the i-th challenge-response for a cross-check over the n servers is described as

follows:

1.The user reveals the αi as well as the i-th permutation key k
pr)p

 to each servers.

2.The server storing vector G
(j)

 aggregates those r rows specified by index k
pr)p

 into a linear

combination.

∑

R
ij)

 = α
i
 ∗ G

(j)
[φk(i) (q)].

prp

q=1

3. Upon receiving R
ij)

s from all the servers, the user takes way blind values in R
(j)

 (j ∈ {m + 1, . . . , n}) by

Ri
(j)

 ← Ri
(j)

 - ∑
r
Q=1 fkj (sIq,j) · _qi ,where Iq = _k(i)prp(q).

4.Then the user verifies whether the received values remain a valid codeword determined by secret matrix P:

 (R
i1)

,…,R
im)

) . P

=

? (R
im+1)

 , . . . ,R
in)

).

 3.4 File Retrieval and Error Recovery

 Since our layout of file matrix is systematic, the user can reconstruct the original file by downloading the data

vectors from the first m servers, assuming that they return the correct response values. However by choosing

system parameters (e.g., r, l, t) appropriately and conducting enough times of verification, we can guarantee the

successful file retrieval with high probability. Therefore, the user can always ask servers to send back blocks

of the r rows specified in the challenge and regenerate the correct blocks by erasure correction, shown in

Algorithm 3, as long as there are at most k misbehaving servers are identified. The newly recovered blocks can

then be redistributed to the misbehaving servers to maintain the correctness of storage.

International Journal Of Engineering Research & Management Technology ISSN: 2348-4039

 Email: editor@ijermt.org www.ijermt.org

Copyright@ijermt.org Page 58

 November - 2014 Volume 1, Issue-6

4. Providing Dynamic Data Support Operation

So far, we assumed that F represents static

Algorithm 3 Error Recovery

1. Procedure

 % Assume the block corruptions have been

 detected among

 % the specified r rows;

 % Assume s ≤ k servers have been identified

 misbehaving

2. Download r rows of blocks from servers ;

3. Treat S servers as erasure and recover blocks.

4. Resend the recovered blocks to corresponding

 Servers.

5. end procedure

Archived data this model may fit some application scenarios, such as libraries and scientific datasets. The

straightforward and trivial way to support these operations is for user to download all the data from the cloud

servers and re-compute the whole parity blocks as well as verification tokens. This would clearly be highly

inefficient. In this section, we will show how our scheme can explicitly and efficiently handle dynamic data

operations for cloud data storage.

A. Update Operation

 In cloud data storage, sometimes the user may need to modify some data block(s) stored in the cloud, from its

current value fij to a new one, fij + fij . We refer this operation as data update. Due to the linear property of Reed-

Solomon code, a user can perform the update operation and generate the updated parity blocks by using fij only,

without involving any other unchanged blocks. Specifically, the user can construct a general update matrix for all

the unused tokens, the user needs to exclude every occurrence of the old data block and replace it with the new

one.

B. Delete Operation

Sometimes, after being stored in the cloud, certain data blocks may need to be deleted. The delete operation we are

considering is a general one, in which user replaces the data block with zero or some special reserved data symbol.

From this point of view, the delete operation is actually a special case of the data update operation, where the

original data blocks can be replaced with zeros or some predetermined special blocks. Therefore, we can rely on

the update procedure to support delete operation, i.e., by setting fij in F to be −fij . Also, all the affected tokens

have to be modified and the updated parity information has to be blinded using the same method specified in

update operation.

C. Append Operation

 In some cases, the user may want to increase the size of his stored data by adding blocks at the end of the data file,

which we refer as data append. We anticipate that the most frequent append operation in cloud data storage is bulk

Append, in which the user needs to upload a large number of blocks (not a single block) at one time. To support

block append operation, we need a slight modification to our token pre-computation. Specifically, we require the

user to expect the maximum size in blocks.

International Journal Of Engineering Research & Management Technology ISSN: 2348-4039

 Email: editor@ijermt.org www.ijermt.org

Copyright@ijermt.org Page 59

 November - 2014 Volume 1, Issue-6

D. Insert Operation

An insert operation to the data file refers to an append operation at the desired index position while maintaining the

same data block structure for the whole data file, i.e., inserting a block F[j] corresponds to shifting all blocks

starting with index j + 1 by one slot. An insert operation may affect many rows in the logical data file matrix F, and

a substantial number of computations are required to renumber all the subsequent blocks as well as re-compute the

challenge-response tokens. Therefore, an efficient insert operation is difficult to support and thus we leave it for

our future work.

5 FUTURE SCOPES

With arrival of cloud computing the conventional way of computing has gone for a sea change. And this new

addition in the computing is not a flash in the pan as it is going to rule the roost in the future. As per some expert

opinions, it is going to be the face of future cloud computing. And hence, the future of cloud computing seems

very promising.

1. Presence of Internet will boost its future: The cloud computing will becomes all the more important with the

omnipresence of high-speed, broadband Internet. Slowly but steadily we are getting closer. Even airlines are

offering satellite based wi-fi services in flights. In a mass drive to connect every village with Internet wireless

Internet services are offered through the help of satellite, although speed is a bit slow.

2. No more software updates: Most of the computer professionals loose lots of their time and efforts

downloading different versions of software so that they can access the various programs and data with little

efforts. Most of the softwares are on the cloud servers so you don't need to down and install for little use. So,

whether you want to access emails or go through spreadsheet, it has become fun with the arrival of cloud

computing.

3. Hardware optional: With the arrival of cloud computing it is no longer necessary to purchase hard drives with

large storage capacity, as it can be stored on cloud. So keep the fear of loosing your data away. All your data

with complete back up can be stored on the cloud.

6. CONCLUSION

 In this paper, we investigated the problem of data security in cloud data storage, which is essentially a distributed

storage system. To ensure the correctness of users’ data in cloud data storage, we proposed an effective and

flexible

distributed scheme with explicit dynamic data support, including block update, delete, and append Through

detailed security and performance analysis, we show that our scheme is highly efficient and resilient to Byzantine

failure, malicious data modification attack, and even server colliding attacks.

REFERENCE
1. Amazon.com “amazon web services(AWS)”, 2008.

2. N.Gohring, Amazon’s “S3 down for several hours”,online at http:\\www.pcworld.com , 2008

3. K.D Bowers, A.Juels and A.Oprea, HAIL:”A high- availability and Integrity Layer for cloud data storage”

4. G. Ateniese , R.D Burns, R curtmola, J.herring “provable data possession at untrusted stores”, 2007
5. J.S Plank and Y.Ding, ”Note: correction to the 1997 tutorial on Reed- Solomon Coding , 2003

6. Q.Wang, K.Ren, W.Lou and Y.Zhang “Dependable and secure sensor data storage with dynamic integrity assurance”, 2009.

7. Asprise.com

8. Google.com

9. M.A Shah , M.Baker , J.C. Bogul and R.Swaminathan “Auditing to keep online storage Service honest”.

10. M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows, and M. Isard “A Cooperative internet backup schemes”

11. G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik“Proc of the secure Comm”08.

12. T.S.J Schwarz and E.L Miller“Store, Forget and Check using allgebric signatures to check remotely tely administered storage”.

13. L.Carter and M. Wegman“Universal Hash Functions”

14. R.Curtmola,O.Khan“MR-PDP Multiple Replica Provable Data Possession”

